Essentially Hermitian matrices revisited

نویسنده

  • S. W. Drury
چکیده

The following case of the Determinantal Conjecture of Marcus and de Oliveira is established. Let A and C be hermitian n × n matrices with prescribed eigenvalues a1, . . . , an and c1, . . . , cn, respectively. Let κ be a non-real unimodular complex number, B = κC, bj = κcj for j = 1, . . . , n. Then det(A− B) ∈ co 8< : n Y j=1 (aj − bσ(j)); σ ∈ Sn 9= ; , where Sn denotes the group of all permutations of {1, . . . , n} and co the convex hull taken in the complex plane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

Ela Perturbations of Functions of Diagonalizable Matrices

Let f be a scalar function defined on σ(A) ∪ σ(Ã). The aim of this paper is to establish inequalities for the norm of f(A) − f(Ã). The literature on perturbations of matrix valued functions is very rich but mainly, perturbations of matrix functions of a complex argument and matrix functions of Hermitian matrices were considered, cf. [1, 11, 13, 14, 16, 18]. The matrix valued functions of a non-...

متن کامل

Congruence of Hermitian Matrices by Hermitian Matrices

Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible iner...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006